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Samarium is widely applied to organic synthesis in the
formation of carbor-carbon bonds and the transformation of a
variety of functionalities with high selectivitie’s. In these
reactions, carbaniofsnd radicalsare thought to be involved
as transient active speciesWe report herein the generation
of novel active speciésnonstabilized carbonyl ylides from
iodomethyl silyl ethers mediated by samarium, otherwise
inaccessible, and their [3 2] cycloadditions to a variety of

unsaturated compounds such as aldehydes, alkenes, allenes, and

alkynes (Scheme 1).

At first we found 1-iodo-3-phenylpropyl triethylsilyl ether
(1a)” prepared quantitatively from 3-phenylpropanal and iodo-
triethylsilané in toluene was transformed to symmetrical oxirane
3aby Smb (eq 1). Without reflux, a tetrahydrofuran derivative
5a was produced in 33% vyield together witBa (17%).
Considering the formation of both produc®a and 5a, it is
strongly and reasonably suggested that the oxirdaeis
produced from carbonyl ylid@a (Scheme 1, R= Ph(CH,),)
and that5a is the cycloadduct oRa to ethylene 4a) which is
produced in the preparation of Spffom samarium metal and
1,2-diiodoethané An equimolar amount of Smto iodohydrin
silyl etherlawas sufficient for this reaction. As the result, the
oxirane3a was obtained in 73% isolated yield on the basis of
Smk accompanied by a trace amount5z when the solution
of Smbk (1.0 mmol)/THF (10 mL}>TMU (N,N,N,N'-tetra-
methylurea, 0.5 mL) was refluxed in advance and successively
added to the toluene solution @& (4 mmol/4 mL), and then
the mixture was stirred at reflux for 5 mi.The same
transformation can also be attained using the Sm-K®Cl,
(cat.) systent? 1a (2 mmol)/THF—toluene (10:2 mL), 63%
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yield. In contrast, tetrahydrofurddawas obtained (64% yield)

when ethylene was passed through a reaction mixtuide (
infra).

OSiEt; sSml, (1.0 mmol)

| THF-TMU Ph/\/\?““/\ P
§ 8 3a 73%
(4.0 mmol) 70 °C, 5 min
/ toluene + Ph o Ph (1)
TMU = N,N,N’ N'tetramethylurea 5a trace

In addition to these results, we further found that the-[2]
cycloaddition of the carbonyl ylid®a to a carbor-oxygen
double bond occurre®. Thus, when the reaction of iodohydrin
silyl etherla was carried out in the presence of an aldehyde,
the corresponding cycloadducts, 1,3-dioxolafiesere obtained
(eq 2). Marginal yields were obtained from the competing
reduction and pinacol coupling of aldehydésinterestingly,
in these reactions, dioxolanésare stereoselectively produced
as a mixture of only two isomers, and the major isomer has the
2,44rans and 2,5eis configurations shown in eq %?. These
reactions are synthetically equivalent to the intermolecular
stereoselective cross-pinacol coupling reaction (RCHO and
PhCHCH,CHO) 15

Sml2 (1.2 mmol)

1ia +
ROHO rmu /\’( ) e
(0.5 mmol) (0.6 mmol) reflux, 5 min major somer
/ toluene 6a(R=Et) : 39% (dr=5/1)
6b (R=iPr) : 40% (dr=2/1)
6c (R=t-Bu): 25% (dr=3/2)

The carbonyl ylides known so far are those bearing some
functionalities, and these groups may affect their reactivities
electronicallyt® The reactivities ohonstabilized carbonyl ylides
still remain unknown. In such a context and also from a
synthetic point of view, we tried to generate other carbonyl
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Table 1. [3 + 2] Cycloaddition of Carbonyl Ylide& to
Dipolarophiles4?

iodomethyl %
silyl etherl dipolarophile4 cycloadduct® yielded
OSiEt, CH,=CH, /\/O 5a 64°
da Ph o7 Ph  (84/16)
Ph 1a |l CgHy7 CeHi7
OSiEt, =/ ’[—g s g0e
4b Et™ g7 "“Et (87/13)
B lb" OMe MeO—, OMe
1b MeO—/ 4c Et™"Ng” “Et (>95/<5)
MeO OMe MeO OMe
=~/ « 9
1b 4d Et o g (>95/<5)
OMe Ph,_ OMe
» /J ’F(Se 74
Ph de Et L (71/29)
O Ph
=—Ph = 99
st
1bf af Etr(o—g-u,a (>95/<5)
OBn ’({OBn
= —\ 5 88
1b 4g eg gy (85/15)
Ph, OMe
OSiEt, 4e ,(_ﬂ" 67
) FPrN o2 i Pr (82/18)
FPriget MeQ
OMe
=.=/ ’Ffﬁ 78
I 4h FPr=Ng 7 P (82/18)
OBn
Ic 1 g 95/<5)
FPreNG 7 Py (o
OBn
OSiEt, 4 ,(=ﬂ" 68
) Bu o “wiBy (>95/<5)
FBu”iq!

aFor the procedure, see ref 17, otherwise notékhe major
stereoisomer. The stereochemistry fag and 5h were tentatively
assigned¢ Isolated yield of5 as a mixture of stereoisomers based on
4. 9The ratio of stereoisomers was shown in parenthés&seaction
was carried out using excess ethylene, and the yield was baskal on
fSee ref 189 Under conditions in ref 13b was obtained in 50% yield.

ylides substituted by only alkyl groups and to examine their
reactivities toward a variety of dipolarophiles in intermolecular
[3 + 2] cycloadditions. All of the carbon dipolarophiles,

alkenes, allenes, and alkynes reacted with nonstabilized car-

bonyl ylides 2a—d to afford the corresponding [3+ 2]
cycloadducts, tetrahydrofurans and dihydrofura#s Selected
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Scheme 2Plausible Pathway for the Generation of
Nonstabilized Carbonyl Ylideg
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the table. It should be noted that these reactions proceed in a
stereospecific manner and the configurations of olefins are
retained in the cycloadducts, suggesting a concerted process;
(E)-1,4-dimethoxy-2-butene4€) and its(Z)-isomer é4d) gave

the corresponding cycloadducts bearingns and cis-meth-
oxymethyl substituents at the 3,4-position, respectively. Inter-
estingly, all major isomers possess &&ns stereochemistry,
and this is consistent with our understanding of the calculation
which shows that the most stable conformation of the 1,3-
disubstituted carbonyl ylide is a sickle fori.

The pathway for the generation of carbonyl ylides from
iodomethyl silyl ethers is not clear at present, and a plausible
route to carbonyl ylideg is shown in Scheme 2. It was reported
that alkoxymethyl chloride and siloxymethyl chloridéd react
with carbonyl compounds in the presence of Sumder Barbier-
type conditions to afford the corresponding adducts where
a-alkoxy- and siloxymethyl carbanions or their equivalents seem
to be involved as intermediates. lodomethyl silyl etiiersay
be also metalated to siloxymethyl carbanion species sueh as
After successive reactions @fwith 1 induced by the oxophi-
licity of samariumvia 8 to form 1-samaroalkyl'liodoalkyl ether
9, spontaneous 1,3-elimination of samarium and iodide ions of
9 may occur to generate carbonyl ylidgust as in the generation
of carbonyl ylides from (trimethylsilyl)(aryl)methyl chloro-
methyl ethef?23

The protocol presented here provides a truly unprecedented
method for the generation of alkyl-substituted carbonyl ylides,
novel reactive species which are not only a new class of
chemical species mediated by samarium but also those otherwise
inaccessible.
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of carbonyl ylides and dipolarophiles, the corresponding cy-
cloadducts were obtained in good to excellent yields. Dipo-
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efficiently with carbonyl ylides, while for efficiency, even simple
alkenes and alkynes react conveniently under ;Si8m(0)
conditions!® Although these cycloadducts may possibly be32

isomers, up to two isomers were observed in these reaction
mixtures, and the structures of the major isomer are shown in
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